Mutual Information Covariance
PortfolioOptimisers.MutualInfoCovariance Type
struct MutualInfoCovariance{T1, T2, T3} <: AbstractCovarianceEstimator
ve::T1
bins::T2
normalise::T3
endCovariance estimator based on mutual information.
MutualInfoCovariance implements a robust covariance estimator that uses mutual information (MI) to capture both linear and nonlinear dependencies between asset returns. This estimator is particularly useful for identifying complex relationships that are not detected by traditional correlation-based methods. The MI matrix is optionally normalised and then rescaled by marginal standard deviations to produce a covariance matrix.
Fields
ve: Variance estimator used to compute marginal standard deviations.bins: Binning algorithm or fixed number of bins for histogram-based MI estimation.normalise: Whether to normalise the MI matrix.
Constructor
MutualInfoCovariance(; ve::AbstractVarianceEstimator = SimpleVariance(),
bins::Union{<:AbstractBins, <:Integer} = HacineGharbiRavier(),
normalise::Bool = true)Keyword arguments correspond to the fields above.
Validation
- If
binsis an integer,bins > 0.
Examples
julia> MutualInfoCovariance()
MutualInfoCovariance
ve ┼ SimpleVariance
│ me ┼ SimpleExpectedReturns
│ │ w ┴ nothing
│ w ┼ nothing
│ corrected ┴ Bool: true
bins ┼ HacineGharbiRavier()
normalise ┴ Bool: trueRelated
sourceStatistics.cov Method
cov(ce::MutualInfoCovariance, X::AbstractMatrix; dims::Int = 1, kwargs...)Compute the mutual information (MI) covariance matrix using a MutualInfoCovariance estimator.
This method computes the pairwise mutual information covariance matrix for the input data matrix X, using the binning strategy and normalisation specified in ce. The MI covariance matrix is obtained by rescaling the MI correlation matrix by the marginal standard deviations, as estimated by the variance estimator in ce.
Arguments
ce: Mutual information-based covariance estimator.X: Data matrix of asset returns (observations × assets).dims: Dimension along which to compute the covariance.kwargs...: Additional keyword arguments passed to the variance estimator.
Returns
sigma::Matrix{<:Real}: Symmetric matrix of mutual information-based covariances.
Validation
dimsis either1or2.
Examples
Related
sourceStatistics.cor Method
cor(ce::MutualInfoCovariance, X::AbstractMatrix; dims::Int = 1, kwargs...)Compute the mutual information (MI) correlation matrix using a MutualInfoCovariance estimator.
This method computes the pairwise mutual information correlation matrix for the input data matrix X, using the binning strategy and normalisation specified in ce. The MI correlation captures both linear and nonlinear dependencies between asset returns, making it robust to complex relationships that may not be detected by traditional correlation measures.
Arguments
ce: Mutual information-based covariance estimator.X: Data matrix of asset returns (observations × assets).dims: Dimension along which to compute the correlation.kwargs...: Additional keyword arguments (currently unused).
Returns
rho::Matrix{<:Real}: Symmetric matrix of mutual information-based correlation coefficients.
Validation
dimsis either1or2.
Related
source