Pre-processing
Prices to returns
Other than FiniteAllocationOptimisationEstimator, all optimisations work based off returns data rather than price data. These functions and types are involved in computing returns.
PortfolioOptimisers.AbstractReturnsResult Type
abstract type AbstractReturnsResult <: AbstractResult endAbstract supertype for all returns result types in PortfolioOptimisers.jl.
All concrete types representing the result of returns calculations (e.g., asset returns, factor returns) should subtype AbstractReturnsResult. This enables a consistent interface for downstream analysis and optimization routines.
Related
sourcePortfolioOptimisers.ReturnsResult Type
struct ReturnsResult{T1, T2, T3, T4, T5, T6, T7} <: AbstractReturnsResult
nx::T1
X::T2
nf::T3
F::T4
ts::T5
iv::T6
ivpa::T7
endA flexible container type for storing the results of asset and factor returns calculations in PortfolioOptimisers.jl.
ReturnsResult is the standard result type returned by returns-processing routines, such as prices_to_returns. It supports both asset and factor returns, as well as optional time series and implied volatility information, and is designed for downstream compatibility with optimization and analysis routines.
Fields
nx: Names or identifiers of asset columns (assets × 1).X: Asset returns matrix (observations × assets).nf: Names or identifiers of factor columns (factors × 1).F: Factor returns matrix (observations × factors).ts: Optional timestamps for each observation (observations × 1).iv: Implied volatilities matrix (observations × assets).ivpa: Implied volatility risk premium adjustment, if a vector (assets × 1).
Constructor
ReturnsResult(; nx::Option{<:VecStr} = nothing, X::Option{<:MatNum} = nothing,
nf::Option{<:VecStr} = nothing, F::Option{<:MatNum} = nothing,
ts::Option{<:VecDate} = nothing, iv::Option{<:MatNum} = nothing,
ivpa::Option{<:Num_VecNum} = nothing)Keyword arguments correspond to the fields above.
Validation
If
nxorXis provided,!isempty(nx),!isempty(X), andlength(nx) == size(X, 2).If
nforFis provided,!isempty(nf),!isempty(F), andlength(nf) == size(F, 2), andsize(X, 1) == size(F, 1).If
tsis provided,!isempty(ts), andlength(ts) == size(X, 1).If
ivis provided,!isempty(iv),all(x -> x >= 0, iv), andsize(iv) == size(X).If
ivpais provided,all(x -> x >= 0, ivpa),all(x -> isfinite(x), ivpa); if a vector,length(ivpa) == size(iv, 2).
Examples
julia> ReturnsResult(; nx = ["A", "B"], X = [0.1 0.2; 0.3 0.4])
ReturnsResult
nx ┼ Vector{String}: ["A", "B"]
X ┼ 2×2 Matrix{Float64}
nf ┼ nothing
F ┼ nothing
ts ┼ nothing
iv ┼ nothing
ivpa ┴ nothingRelated
sourcePortfolioOptimisers._check_names_and_returns_matrix Function
_check_names_and_returns_matrix(names::Option{<:VecStr}, mat::Option{<:MatNum},
names_sym::Symbol, mat_sym::Symbol)Validate that asset or factor names and their corresponding returns matrix are provided and consistent.
Arguments
names: Asset or factor names.mat: Returns matrix.names_sym: Symbolic name for the names argument displayed in error messages.mat_sym: Symbolic name for the matrix argument displayed in error messages.
Returns
nothing.
Details
- If either
namesormatis notnothing:!isnothing(names)and!isnothing(mat).!isempty(names)and!isempty(mat).length(names) == size(mat, 2).
Related
sourcePortfolioOptimisers.prices_to_returns Function
prices_to_returns(X::TimeArray, F::TimeArray = TimeArray(TimeType[], []);
Rb::Option{<:TimeArray} = nothing, iv::Option{<:TimeArray} = nothing,
ivpa::Option{<:Num_VecNum} = nothing, ret_method::Symbol = :simple,
padding::Bool = false, missing_col_percent::Number = 1.0,
missing_row_percent::Option{<:Number} = 1.0, collapse_args::Tuple = (),
map_func::Option{<:Function} = nothing, join_method::Symbol = :outer,
impute_method::Option{<:Impute.Imputor} = nothing)Convert price data (and optionally factor data) in TimeArray format to returns, with flexible handling of missing data, imputation, and optional implied volatility information.
Arguments
X: Asset price data (timestamps × assets).F: Optional Factor price data (timestamps × factors).Rb: Optional Benchmark price data (timestamps × assets) or (timestamps × 1).iv: Optional Implied volatility data.ivpa: Optional Implied volatility risk premium adjustment.ret_method: Return calculation method (:simpleor:log).padding: Whether to pad missing values in returns calculation.missing_col_percent: Maximum allowed fraction(0, 1]of missing values per column (asset + factor).missing_row_percent: Maximum allowed fraction(0, 1]of missing values per row (timestamp).collapse_args: Arguments for collapsing the time series (e.g., to lower frequency).map_func: Optional function to apply to the data before returns calculation.join_method: How to join asset and factor data (:outer,:inner, etc.).impute_method: Optional imputation method for missing data.
Returns
ReturnsResult: Struct containing asset/factor returns, names, time series, and optional implied volatility data.
Examples
julia> using TimeSeries
julia> X = TimeArray(Date(2020, 1, 1):Day(1):Date(2020, 1, 3), [100 101; 102 103; 104 105],
["A", "B"])
3×2 TimeSeries.TimeArray{Int64, 2, Dates.Date, Matrix{Int64}} 2020-01-01 to 2020-01-03
┌────────────┬─────┬─────┐
│ │ A │ B │
├────────────┼─────┼─────┤
│ 2020-01-01 │ 100 │ 101 │
│ 2020-01-02 │ 102 │ 103 │
│ 2020-01-03 │ 104 │ 105 │
└────────────┴─────┴─────┘
julia> prices_to_returns(X)
ReturnsResult
nx ┼ Vector{String}: ["A", "B"]
X ┼ 2×2 Matrix{Float64}
nf ┼ nothing
F ┼ nothing
ts ┼ Vector{Dates.Date}: [Dates.Date("2020-01-02"), Dates.Date("2020-01-03")]
iv ┼ nothing
ivpa ┴ nothingRelated
sourcePre-filtering
Price data is often incomplete or noisy, so it can be worthwhile having some pre-filtering steps to remove data that does not contribute meaningful information and may pollute calculations.
PortfolioOptimisers.find_complete_indices Function
find_complete_indices(X::AbstractMatrix; dims::Int = 1)Return the indices of columns (or rows) in matrix X that do not contain any missing or NaN values.
This function scans the specified dimension of the input matrix and returns the indices of columns (or rows) that are complete, i.e., contain no missing or NaN values.
Arguments
X: Input matrix of numeric values (observations × assets).dims: Dimension along which to check for completeness (1for columns,2for rows). Default is1.
Returns
res::Vector{Int}: Indices of columns (or rows) inXthat are complete.
Validation
dims in (1, 2).
Details
If
dims == 2, the matrix is transposed and columns are checked.Any column (or row) containing at least one
missingorNaNvalue is excluded.The result is a vector of indices of complete columns (or rows).
Examples
julia> X = [1.0 2.0 NaN; 4.0 missing 6.0];
julia> find_complete_indices(X)
1-element Vector{Int64}:
1
julia> find_complete_indices(X; dims = 2)
Int64[]Related
source