Coskewness
PortfolioOptimisers.Coskewness Type
struct Coskewness{T1, T2, T3} <: CoskewnessEstimator
me::T1
mp::T2
alg::T3
endContainer type for coskewness estimators.
Coskewness encapsulates the mean estimator, matrix processing estimator, and moment algorithm for coskewness estimation. This enables modular workflows for higher-moment portfolio analysis.
Fields
me: Mean estimator for expected returns.mp: Matrix processing estimator for coskewness tensors.alg: Moment algorithm.
Constructor
Coskewness(; me::AbstractExpectedReturnsEstimator = SimpleExpectedReturns(),
mp::AbstractMatrixProcessingEstimator = DefaultMatrixProcessing(),
alg::AbstractMomentAlgorithm = Full())Keyword arguments correspond to the fields above.
Examples
julia> Coskewness()
Coskewness
me ┼ SimpleExpectedReturns
│ w ┴ nothing
mp ┼ DefaultMatrixProcessing
│ pdm ┼ Posdef
│ │ alg ┴ UnionAll: NearestCorrelationMatrix.Newton
│ denoise ┼ nothing
│ detone ┼ nothing
│ alg ┴ nothing
alg ┴ Full()Related
PortfolioOptimisers.coskewness Function
coskewness(ske::Union{Nothing, <:Coskewness}, X::AbstractMatrix; dims::Int = 1,
mean = nothing, kwargs...)Compute the full coskewness tensor and processed matrix for a dataset. For Full, it uses all centered data; for Semi, it uses only negative deviations. If the estimator is nothing, returns (nothing, nothing).
Arguments
ske: Coskewness estimator.X: Data matrix (observations × assets).dims: Dimension along which to compute the mean.mean: Optional mean vector. If not provided, computed using the estimator's mean estimator.kwargs...: Additional keyword arguments passed to the mean estimator.
Validation
dimsis either1or2.
Returns
cskew::Matrix{<:Real}: Coskewness tensor (observations × assets^2).V::Matrix{<:Real}: Processed coskewness matrix (assets × assets).
Examples
julia> using StableRNGs
julia> rng = StableRNG(123456789);
julia> X = randn(rng, 10, 3);
julia> cskew, V = coskewness(Coskewness(), X);
julia> cskew
3×9 Matrix{Float64}:
-0.329646 0.0782455 0.325842 … 0.325842 -0.250881 0.16769
0.0782455 -0.236104 -0.250881 -0.250881 0.266005 0.144546
0.325842 -0.250881 0.16769 0.16769 0.144546 -0.605589
julia> V
3×3 Matrix{Float64}:
0.513743 -0.0452078 -0.290893
-0.0452078 0.402765 -0.0372996
-0.290893 -0.0372996 0.837701Related
sourcePortfolioOptimisers.CoskewnessEstimator Type
abstract type CoskewnessEstimator <: AbstractEstimator endAbstract supertype for all coskewness estimators in PortfolioOptimisers.jl.
All concrete types implementing coskewness estimation algorithms should subtype CoskewnessEstimator. This enables a consistent interface for coskewness-based higher moment estimators throughout the package.
Related
sourcePortfolioOptimisers.__coskewness Function
__coskewness(cskew::AbstractMatrix, X::AbstractMatrix,
mp::AbstractMatrixProcessingEstimator)Internal helper for coskewness matrix processing.
__coskewness processes the coskewness tensor by applying the matrix processing estimator to each block, then projects the result using eigenvalue decomposition and clamps negative values. Used internally for robust coskewness estimation.
Arguments
cskew: Coskewness tensor (flattened or block matrix).X: Data matrix (observations × assets).mp: Matrix processing estimator.
Returns
V::Matrix{<:Real}: Processed coskewness matrix.
Related
sourcePortfolioOptimisers._coskewness Function
_coskewness(Y::AbstractMatrix, X::AbstractMatrix, mp::AbstractMatrixProcessingEstimator)Internal helper for coskewness computation.
_coskewness computes the coskewness tensor and applies matrix processing. Used internally by coskewness estimators.
Arguments
Y: Centered data vector (e.g.,X .- mean).X: Data matrix (observations × assets).mp: Matrix processing estimator.
Returns
cskew::Matrix{<:Real}: Coskewness tensor.V::Matrix{<:Real}: Processed coskewness matrix.
Related
source