Gerber Covariance
PortfolioOptimisers.Gerber0 Type
struct Gerber0 <: UnstandardisedGerberCovarianceAlgorithm endImplements the original Gerber covariance algorithm.
Related
sourcePortfolioOptimisers.Gerber1 Type
struct Gerber1 <: UnstandardisedGerberCovarianceAlgorithm endImplements the first variant of the Gerber covariance algorithm.
Related
sourcePortfolioOptimisers.Gerber2 Type
struct Gerber2 <: UnstandardisedGerberCovarianceAlgorithm endImplements the second variant of the Gerber covariance algorithm.
Related
sourcePortfolioOptimisers.StandardisedGerber0 Type
struct StandardisedGerber0{T1} <: StandardisedGerberCovarianceAlgorithm
me::T1
endImplements the original Gerber covariance algorithm on Z-transformed data.
Fields
me: Expected returns estimator used for mean-centering prior to normalisation.
Constructor
StandardisedGerber0(; me::AbstractExpectedReturnsEstimator = SimpleExpectedReturns())Keyword arguments correspond to the fields above.
Examples
julia> StandardisedGerber0()
StandardisedGerber0
me ┼ SimpleExpectedReturns
│ w ┴ nothingRelated
PortfolioOptimisers.StandardisedGerber1 Type
struct StandardisedGerber1{T1} <: StandardisedGerberCovarianceAlgorithm
me::T1
endImplements the first variant of the Gerber covariance algorithm on Z-transformed data.
Fields
me: Expected returns estimator used for mean-centering prior to normalisation.
Constructor
StandardisedGerber1(; me::AbstractExpectedReturnsEstimator = SimpleExpectedReturns())Keyword arguments correspond to the fields above.
Examples
julia> StandardisedGerber1()
StandardisedGerber1
me ┼ SimpleExpectedReturns
│ w ┴ nothingRelated
PortfolioOptimisers.StandardisedGerber2 Type
struct StandardisedGerber2{T1} <: StandardisedGerberCovarianceAlgorithm
me::T1
endImplements the second variant of the Gerber covariance algorithm on Z-transformed data.
Fields
me: Expected returns estimator used for mean-centering prior to normalisation.
Constructor
StandardisedGerber2(; me::AbstractExpectedReturnsEstimator = SimpleExpectedReturns())Keyword arguments correspond to the fields above.
Examples
julia> StandardisedGerber2()
StandardisedGerber2
me ┼ SimpleExpectedReturns
│ w ┴ nothingRelated
PortfolioOptimisers.GerberCovariance Type
struct GerberCovariance{T1, T2, T3, T4} <: BaseGerberCovariance
ve::T1
pdm::T2
threshold::T3
alg::T4
endA flexible container type for configuring and applying Gerber covariance estimators in PortfolioOptimisers.jl.
GerberCovariance encapsulates all components required for Gerber-based covariance or correlation estimation, including the variance estimator, positive definite matrix estimator, threshold parameter, and the specific Gerber algorithm variant. This enables modular and extensible workflows for robust covariance estimation using Gerber statistics.
Fields
ve: Variance estimator.pdm: Positive definite matrix estimator (seePosdef).threshold: Threshold parameter for Gerber covariance computation.alg: Gerber covariance algorithm variant.
Constructor
GerberCovariance(; ve::StatsBase.CovarianceEstimator = SimpleVariance(),
pdm::Union{Nothing, <:Posdef} = Posdef(), threshold::Real = 0.5,
alg::GerberCovarianceAlgorithm = Gerber1())Keyword arguments correspond to the fields above.
Validation
0 < threshold < 1.
Related
Statistics.cov Method
cov(ce::GerberCovariance, X::AbstractMatrix; dims::Int = 1, kwargs...)Compute the Gerber covariance matrix using an unstandardised Gerber covariance estimator.
This method computes the Gerber covariance matrix for the input data matrix X using the specified unstandardised Gerber covariance estimator. The standard deviation vector is computed using the estimator's variance estimator. The Gerber correlation is computed via gerber, and the result is rescaled to a covariance matrix using the standard deviation vector.
Arguments
ce::GerberCovariance: Gerber covariance estimator.ce::GerberCovariance{<:Any, <:Any, <:Any, <:UnstandardisedGerberCovarianceAlgorithm}: Compute the unstandardised Gerber covariance matrix.ce::GerberCovariance{<:Any, <:Any, <:Any, <:StandardisedGerberCovarianceAlgorithm}: Compute the standardised Gerber covariance matrix.
X: Data matrix (observations × assets).dims: Dimension along which to compute the covariance.kwargs...: Additional keyword arguments passed to the standard deviation estimator.
Returns
sigma::Matrix{<:Real}: The Gerber covariance matrix.
Validation
dimsis either1or2.
Related
gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:StandardisedGerber0}, X::AbstractMatrix)gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:StandardisedGerber1}, X::AbstractMatrix)gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:StandardisedGerber2}, X::AbstractMatrix)cor(ce::GerberCovariance, X::AbstractMatrix; dims::Int = 1, kwargs...)
Statistics.cor Method
cor(ce::GerberCovariance, X::AbstractMatrix; dims::Int = 1, kwargs...)Compute the Gerber correlation matrix using an unstandardised Gerber covariance estimator.
This method computes the Gerber correlation matrix for the input data matrix X using the specified unstandardised Gerber covariance estimator. The standard deviation vector is computed using the estimator's variance estimator. The Gerber correlation is then computed via gerber.
Arguments
ce::GerberCovariance: Gerber covariance estimator.ce::GerberCovariance{<:Any, <:Any, <:Any, <:UnstandardisedGerberCovarianceAlgorithm}: Compute the unstandardised Gerber correlation matrix.ce::GerberCovariance{<:Any, <:Any, <:Any, <:StandardisedGerberCovarianceAlgorithm}: Compute the standardised Gerber correlation matrix.
X: Data matrix (observations × assets).dims: Dimension along which to compute the correlation.kwargs...: Additional keyword arguments passed to the standard deviation estimator.
Returns
rho::Matrix{<:Real}: The Gerber correlation matrix.
Validation
dimsis either1or2.
Related
gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:StandardisedGerber0}, X::AbstractMatrix)gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:StandardisedGerber1}, X::AbstractMatrix)gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:StandardisedGerber2}, X::AbstractMatrix)cov(ce::GerberCovariance, X::AbstractMatrix; dims::Int = 1, kwargs...)
PortfolioOptimisers.BaseGerberCovariance Type
abstract type BaseGerberCovariance <: AbstractCovarianceEstimator endAbstract supertype for all Gerber covariance estimators in PortfolioOptimisers.jl.
All concrete types implementing Gerber covariance estimation algorithms should subtype BaseGerberCovariance. This enables a consistent interface for Gerber-based covariance estimators throughout the package.
Related
sourcePortfolioOptimisers.GerberCovarianceAlgorithm Type
abstract type GerberCovarianceAlgorithm <: AbstractMomentAlgorithm endAbstract supertype for all Gerber covariance algorithm types in PortfolioOptimisers.jl.
All concrete types implementing specific Gerber covariance algorithms should subtype GerberCovarianceAlgorithm. This enables flexible extension and dispatch of Gerber covariance routines.
These types are used to specify the algorithm when constructing a GerberCovariance estimator.
Related
PortfolioOptimisers.UnstandardisedGerberCovarianceAlgorithm Type
abstract type UnstandardisedGerberCovarianceAlgorithm <: GerberCovarianceAlgorithm endAbstract supertype for all unstandardised Gerber covariance algorithm types.
Concrete types implementing unstandardised Gerber covariance algorithms should subtype UnstandardisedGerberCovarianceAlgorithm.
Related
sourcePortfolioOptimisers.StandardisedGerberCovarianceAlgorithm Type
abstract type StandardisedGerberCovarianceAlgorithm <: GerberCovarianceAlgorithm endAbstract supertype for all standardised Gerber covariance algorithm types. These Z-transform the data before applying the Gerber covariance algorithm.
Concrete types implementing standardised Gerber covariance algorithms should subtype StandardisedGerberCovarianceAlgorithm.
Related
sourcePortfolioOptimisers.gerber Method
gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:Gerber0}, X::AbstractMatrix,
std_vec::AbstractArray)Implements the original Gerber correlation algorithm.
This method computes the Gerber correlation or correlation matrix for the input data matrix X using the original Gerber0 algorithm. The computation is based on thresholding the standardized data and counting co-occurrences of threshold exceedances.
Arguments
ce: Gerber correlation estimator configured with theGerber0algorithm.X: Data matrix (observations × assets).std_vec: Vector of standard deviations for each asset, used to scale the threshold.
Returns
rho::Matrix{<:Real}: The Gerber correlation, projected to be positive definite using the estimator'spdmfield.
Details
The algorithm proceeds as follows:
- For each entry in
X, compute two Boolean matrices:
U: Entries whereXexceedsthreshold * std_vec.D: Entries whereXis less than-threshold * std_vec.
Compute
UmD = U - DandUpD = U + D.The Gerber correlation is given by
(UmD' * UmD) ⊘ (UpD' * UpD).The result is projected to the nearest positive definite matrix using
posdef!.
Related
sourcePortfolioOptimisers.gerber Method
gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:StandardisedGerber0}, X::AbstractMatrix)Implements the original Gerber correlation algorithm on Z-transformed data.
This method computes the Gerber correlation or correlation matrix for the input data matrix X using the original StandardisedGerber0 algorithm. The computation is performed on data that has already been Z-transformed (mean-centered and standardised), and is based on thresholding and counting co-occurrences of threshold exceedances.
Arguments
ce: Gerber correlation estimator configured with theStandardisedGerber0algorithm.X: Z-transformed data matrix (observations × assets).
Returns
rho::Matrix{<:Real}: The Gerber correlation matrix, projected to be positive definite using the estimator'spdmfield.
Details
The algorithm proceeds as follows:
- For each entry in
X, compute two Boolean matrices:
U: Entries whereXexceedsce.threshold.D: Entries whereXis less than-ce.threshold.
Compute
UmD = U - DandUpD = U + D.The Gerber correlation is given by
(UmD' * UmD) ⊘ (UpD' * UpD).The result is projected to the nearest positive definite matrix using
posdef!.
Related
sourcePortfolioOptimisers.gerber Method
gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:Gerber1}, X::AbstractMatrix,
std_vec::AbstractArray)Implements the first variant of the Gerber correlation algorithm.
This method computes the Gerber correlation or correlation matrix for the input data matrix X using the Gerber1 algorithm. The computation is based on thresholding the standardized data, counting co-occurrences of threshold exceedances, and adjusting for non-exceedance events.
Arguments
ce: Gerber correlation estimator configured with theGerber1algorithm.X: Data matrix (observations × assets).std_vec: Vector of standard deviations for each asset, used to scale the threshold.
Returns
rho::Matrix{<:Real}: The Gerber correlation matrix, projected to be positive definite using the estimator'spdmfield.
Details
The algorithm proceeds as follows:
- For each entry in
X, compute three Boolean matrices:
U: Entries whereXexceedsthreshold * std_vec.D: Entries whereXis less than-threshold * std_vec.N: Entries whereXis within[-threshold * std_vec, threshold * std_vec](i.e., neither up nor down).
Compute
UmD = U - D.The Gerber1 correlation is given by
(UmD' * UmD) ⊘ (T .- (N' * N)), whereTis the number of observations.The result is projected to the nearest positive definite matrix using
posdef!.
PortfolioOptimisers.gerber Method
gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:StandardisedGerber1}, X::AbstractMatrix)Implements the first variant of the Gerber correlation algorithm on Z-transformed data.
This method computes the Gerber correlation or correlation matrix for the input data matrix X using the StandardisedGerber1 algorithm. The computation is performed on data that has already been Z-transformed (mean-centered and standardised), and is based on thresholding, counting co-occurrences of threshold exceedances, and adjusting for non-exceedance events.
Arguments
ce: Gerber correlation estimator configured with theStandardisedGerber1algorithm.X: Z-transformed data matrix (observations × assets).
Returns
rho::Matrix{<:Real}: The Gerber correlation matrix, projected to be positive definite using the estimator'spdmfield.
Details
The algorithm proceeds as follows:
- For each entry in
X, compute three Boolean matrices:
U: Entries whereXexceedsce.threshold.D: Entries whereXis less than-ce.threshold.N: Entries whereXis within[-ce.threshold, ce.threshold](i.e., neither up nor down).
Compute
UmD = U - D.The Gerber1 correlation is given by
(UmD' * UmD) ⊘ (T .- (N' * N)), whereTis the number of observations.The result is projected to the nearest positive definite matrix using
posdef!.
Related
sourcePortfolioOptimisers.gerber Method
gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:Gerber2}, X::AbstractMatrix,
std_vec::AbstractArray)Implements the second variant of the Gerber correlation algorithm.
This method computes the Gerber correlation or correlation matrix for the input data matrix X using the Gerber2 algorithm. The computation is based on thresholding the standardized data, constructing a signed indicator matrix, and normalizing by the geometric mean of diagonal elements.
Arguments
ce: Gerber correlation estimator configured with theGerber2algorithm.X: Data matrix (observations × assets).std_vec: Vector of standard deviations for each asset, used to scale the threshold.
Returns
rho::Matrix{<:Real}: The Gerber correlation or correlation matrix, projected to be positive definite using the estimator'spdmfield.
Details
The algorithm proceeds as follows:
- For each entry in
X, compute two Boolean matrices:
U: Entries whereXexceedsthreshold * std_vec.D: Entries whereXis less than-threshold * std_vec.
Compute the signed indicator matrix
UmD = U - D.Compute the raw Gerber2 matrix
H = UmD' * UmD.Normalize:
rho = H ⊘ (h * h'), whereh = sqrt.(diag(H)).The result is projected to the nearest positive definite matrix using
posdef!.
Related
sourcePortfolioOptimisers.gerber Method
gerber(ce::GerberCovariance{<:Any, <:Any, <:Any, <:StandardisedGerber2}, X::AbstractMatrix)Implements the second variant of the Gerber correlation algorithm on Z-transformed data.
This method computes the Gerber correlation or correlation matrix for the input data matrix X using the StandardisedGerber2 algorithm. The computation is performed on data that has already been Z-transformed (mean-centered and standardised), and is based on thresholding, constructing a signed indicator matrix, and normalizing by the geometric mean of diagonal elements.
Arguments
ce: Gerber correlation estimator configured with theStandardisedGerber2algorithm.X: Z-transformed data matrix (observations × assets).
Returns
rho::Matrix{<:Real}: The Gerber correlation matrix, projected to be positive definite using the estimator'spdmfield.
Details
The algorithm proceeds as follows:
- For each entry in
X, compute two Boolean matrices:
U: Entries whereXexceedsce.threshold.D: Entries whereXis less than-ce.threshold.
Compute the signed indicator matrix
UmD = U - D.Compute the raw Gerber2 matrix
H = UmD' * UmD.Normalize:
rho = H ⊘ (h * h'), whereh = sqrt.(diag(H)).The result is projected to the nearest positive definite matrix using
posdef!.
Related
source