Delta Uncertainty Sets
PortfolioOptimisers.DeltaUncertaintySet Type
struct DeltaUncertaintySet{T1, T2, T3} <: AbstractUncertaintySetEstimator
pe::T1
dmu::T2
dsigma::T3
endEstimator for box uncertainty sets using delta bounds on mean and covariance statistics in portfolio optimisation.
Fields
pe: Prior estimator used to compute mean and covariance statistics.dmu: Delta bound for expected returns (mean).dsigma: Delta bound for covariance.
Constructor
DeltaUncertaintySet(; pe::AbstractPriorEstimator = EmpiricalPrior(), dmu::Real = 0.1,
dsigma::Real = 0.1)Keyword arguments correspond to the fields above.
Validation
dmu >= 0.dsigma >= 0.
Examples
julia> DeltaUncertaintySet()
DeltaUncertaintySet
pe ┼ EmpiricalPrior
│ ce ┼ PortfolioOptimisersCovariance
│ │ ce ┼ Covariance
│ │ │ me ┼ SimpleExpectedReturns
│ │ │ │ w ┴ nothing
│ │ │ ce ┼ GeneralCovariance
│ │ │ │ ce ┼ StatsBase.SimpleCovariance: StatsBase.SimpleCovariance(true)
│ │ │ │ w ┴ nothing
│ │ │ alg ┴ Full()
│ │ mp ┼ DefaultMatrixProcessing
│ │ │ pdm ┼ Posdef
│ │ │ │ alg ┴ UnionAll: NearestCorrelationMatrix.Newton
│ │ │ denoise ┼ nothing
│ │ │ detone ┼ nothing
│ │ │ alg ┴ nothing
│ me ┼ SimpleExpectedReturns
│ │ w ┴ nothing
│ horizon ┴ nothing
dmu ┼ Float64: 0.1
dsigma ┴ Float64: 0.1Related
sourcePortfolioOptimisers.ucs Function
ucs(ue::DeltaUncertaintySet, X::AbstractMatrix,
F::Union{Nothing, <:AbstractMatrix} = nothing; dims::Int = 1, kwargs...)Constructs box uncertainty sets for mean and covariance statistics using delta bounds from a prior estimator.
Arguments
ue: Delta uncertainty set estimator. Provides delta bounds and prior estimator.X: Data matrix (e.g., returns).F: Optional factor matrix. Used by the prior estimator.dims: Dimension along which to compute statistics (default: 1).kwargs...: Additional keyword arguments passed to the prior estimator.
Returns
(mu_ucs::BoxUncertaintySet, sigma_ucs::BoxUncertaintySet): Expected returns and covariance uncertainty sets.
Details
Computes prior statistics using the provided prior estimator.
Constructs mean uncertainty set with lower bound at zero and upper bound at
2 * dmu * abs.(pr.mu).Constructs covariance uncertainty set with bounds at
pr.sigma ± d_sigma, whered_sigma = dsigma * abs.(pr.sigma).Returns both sets as a tuple.
Related
sourcePortfolioOptimisers.mu_ucs Function
mu_ucs(ue::DeltaUncertaintySet, X::AbstractMatrix,
F::Union{Nothing, <:AbstractMatrix} = nothing; dims::Int = 1, kwargs...)Constructs a box uncertainty set for expected returns (mean) using delta bounds from a prior estimator.
Arguments
ue: Delta uncertainty set estimator. Provides delta bounds and prior estimator.X: Data matrix (e.g., returns).F: Optional factor matrix. Used by the prior estimator (default:nothing).dims: Dimension along which to compute statistics (default:1).kwargs...: Additional keyword arguments passed to the prior estimator.
Returns
mu_ucs::BoxUncertaintySet: Expected returns uncertainty set.
Details
Computes prior statistics using the provided prior estimator.
Constructs mean uncertainty set with lower bound at zero and upper bound at
2 * dmu * abs.(pr.mu).Ignores additional arguments and keyword arguments except those passed to the prior estimator.
Related
sourcePortfolioOptimisers.sigma_ucs Function
sigma_ucs(ue::DeltaUncertaintySet, X::AbstractMatrix,
F::Union{Nothing, <:AbstractMatrix} = nothing; dims::Int = 1, kwargs...)Constructs a box uncertainty set for covariance using delta bounds from a prior estimator.
Arguments
ue: Delta uncertainty set estimator. Provides delta bounds and prior estimator.X: Data matrix (e.g., returns).F: Optional factor matrix. Used by the prior estimator (default:nothing).dims: Dimension along which to compute statistics (default:1).kwargs...: Additional keyword arguments passed to the prior estimator.
Returns
sigma_ucs::BoxUncertaintySet: Covariance uncertainty set.
Details
Computes prior statistics using the provided prior estimator.
Constructs covariance uncertainty set with lower bound at
pr.sigma - d_sigmaand upper bound atpr.sigma + d_sigma, whered_sigma = dsigma * abs.(pr.sigma).Ignores additional arguments and keyword arguments except those passed to the prior estimator.
Related
source