Factor Prior
PortfolioOptimisers.FactorPrior Type
struct FactorPrior{T1, T2, T3, T4, T5} <: AbstractLowOrderPriorEstimator_F
pe::T1
mp::T2
re::T3
ve::T4
rsd::T5
endFactor-based prior estimator for asset returns.
FactorPrior is a low order prior estimator that computes the mean and covariance of asset returns using a factor model. It combines a factor prior estimator, matrix post-processing, regression, and variance estimation to produce posterior moments. Optionally, it can add residual variance to the posterior covariance for robust estimation.
Fields
pe: Factor prior estimator.mp: Matrix post-processing estimator.re: Regression estimator.ve: Variance estimator for residuals.rsd: Boolean flag to add residual variance to posterior covariance.
Constructor
FactorPrior(; pe::AbstractLowOrderPriorEstimator_A_AF = EmpiricalPrior(),
mp::AbstractMatrixProcessingEstimator = DefaultMatrixProcessing(),
re::AbstractRegressionEstimator = StepwiseRegression(),
ve::AbstractVarianceEstimator = SimpleVariance(), rsd::Bool = true)Keyword arguments correspond to the fields above.
Examples
julia> FactorPrior()
FactorPrior
pe ┼ EmpiricalPrior
│ ce ┼ PortfolioOptimisersCovariance
│ │ ce ┼ Covariance
│ │ │ me ┼ SimpleExpectedReturns
│ │ │ │ w ┴ nothing
│ │ │ ce ┼ GeneralCovariance
│ │ │ │ ce ┼ StatsBase.SimpleCovariance: StatsBase.SimpleCovariance(true)
│ │ │ │ w ┴ nothing
│ │ │ alg ┴ Full()
│ │ mp ┼ DefaultMatrixProcessing
│ │ │ pdm ┼ Posdef
│ │ │ │ alg ┴ UnionAll: NearestCorrelationMatrix.Newton
│ │ │ denoise ┼ nothing
│ │ │ detone ┼ nothing
│ │ │ alg ┴ nothing
│ me ┼ SimpleExpectedReturns
│ │ w ┴ nothing
│ horizon ┴ nothing
mp ┼ DefaultMatrixProcessing
│ pdm ┼ Posdef
│ │ alg ┴ UnionAll: NearestCorrelationMatrix.Newton
│ denoise ┼ nothing
│ detone ┼ nothing
│ alg ┴ nothing
re ┼ StepwiseRegression
│ crit ┼ PValue
│ │ threshold ┴ Float64: 0.05
│ alg ┼ Forward()
│ target ┼ LinearModel
│ │ kwargs ┴ @NamedTuple{}: NamedTuple()
ve ┼ SimpleVariance
│ me ┼ SimpleExpectedReturns
│ │ w ┴ nothing
│ w ┼ nothing
│ corrected ┴ Bool: true
rsd ┴ Bool: trueRelated
PortfolioOptimisers.prior Method
prior(pe::FactorPrior, X::AbstractMatrix, F::AbstractMatrix; dims::Int = 1, kwargs...)Compute factor-based prior moments for asset returns using a factor model.
prior estimates the mean and covariance of asset returns using the specified factor prior estimator, regression, and matrix post-processing. The factor returns matrix F is used to compute factor moments, which are then mapped to asset space via regression. Optionally, residual variance is added to the posterior covariance for robust estimation. The result is returned as a LowOrderPrior object.
Arguments
pe: Factor prior estimator.X: Asset returns matrix (observations × assets).F: Factor returns matrix (observations × factors).dims: Dimension along which to compute moments.kwargs...: Additional keyword arguments passed to matrix processing and estimators.
Returns
pr::LowOrderPrior: Result object containing posterior asset returns, mean vector, covariance matrix, Cholesky factor, regression result, and factor moments.
Validation
dims in (1, 2).
Related
source