Mean
PortfolioOptimisers.SimpleExpectedReturns
— Typestruct SimpleExpectedReturns{T1} <: AbstractExpectedReturnsEstimator
w::T1
end
A simple expected returns estimator for PortfolioOptimisers.jl, representing the sample mean with optional observation weights.
SimpleExpectedReturns
is the standard estimator for computing expected returns as the (possibly weighted) mean of asset returns. It supports both unweighted and weighted mean estimation by storing an optional weights vector.
Fields
w::Union{Nothing, <:AbstractWeights}
: Optional weights for each observation. Ifnothing
, the unweighted mean is computed.
Constructor
SimpleExpectedReturns(; w::Union{Nothing, <:AbstractWeights} = nothing)
Construct a SimpleExpectedReturns
estimator with optional observation weights.
Fields
w::Union{Nothing, <:AbstractWeights}
: Optional weights for each observation.
Related
PortfolioOptimisers.SimpleExpectedReturns
— MethodSimpleExpectedReturns(; w::Union{Nothing, <:AbstractWeights} = nothing)
Construct a SimpleExpectedReturns
estimator for computing expected returns as the (optionally weighted) sample mean.
Arguments
w::Union{Nothing, <:AbstractWeights}
: Optional observation weights. Ifnothing
, the unweighted mean is computed.
ReturnsResult
SimpleExpectedReturns
: A simple expected returns estimator configured with optional weights.
Validation
- If
w
is provided, it must not be empty.
ReturnsResult
SimpleExpectedReturns
: A simple expected returns estimator.
Examples
julia> using StatsBase
julia> ser = SimpleExpectedReturns()
SimpleExpectedReturns
w | nothing
julia> w = Weights([0.2, 0.3, 0.5]);
julia> ser = SimpleExpectedReturns(; w = w)
SimpleExpectedReturns
w | StatsBase.Weights{Float64, Float64, Vector{Float64}}: [0.2, 0.3, 0.5]
Related
Statistics.mean
— Methodmean(me::SimpleExpectedReturns, X::AbstractArray; dims::Int = 1, kwargs...)
Compute the mean of asset returns using a SimpleExpectedReturns
estimator.
This method computes the expected returns as the sample mean of the input data X
, optionally using observation weights stored in the estimator. If no weights are provided, the unweighted mean is computed.
Arguments
me::SimpleExpectedReturns
: The expected returns estimator.X::AbstractArray
: Data array of asset returns (observations × assets).dims
: Dimension along which to compute the mean.kwargs...
: Additional keyword arguments passed toStatistics.mean
.
ReturnsResult
- The mean of
X
along the specified dimension using theSimpleExpectedReturns
estimator.
Examples
julia> using StatsBase
julia> X = [0.01 0.02; 0.03 0.04];
julia> ser = SimpleExpectedReturns()
SimpleExpectedReturns
w | nothing
julia> mean(ser, X)
1×2 Matrix{Float64}:
0.02 0.03
julia> w = Weights([0.2, 0.8]);
julia> serw = SimpleExpectedReturns(; w = w)
SimpleExpectedReturns
w | StatsBase.Weights{Float64, Float64, Vector{Float64}}: [0.2, 0.8]
julia> mean(serw, X)
1×2 Matrix{Float64}:
0.026 0.036
Related