Base Distance

PortfolioOptimisers.VariationInfoDistanceType
struct VariationInfoDistance{T1, T2} <: AbstractDistanceAlgorithm
    bins::T1
    normalise::T2
end

Variation of Information (VI) distance algorithm for portfolio optimization.

VariationInfoDistance specifies the use of the Variation of Information (VI) metric, an information-theoretic distance based on entropy and mutual information.

Fields

  • bins: Binning strategy or number of bins. If an integer, must be strictly positive.
  • normalise: Whether to normalise the VI distance to the range [0, 1].

Constructor

VariationInfoDistance(; bins::Union{<:AbstractBins, <:Integer} = HacineGharbiRavier(),
                      normalise::Bool = true)

Keyword arguments correspond to the fields above.

Validation

  • If bins is an integer, bins > 0.

Examples

julia> VariationInfoDistance()
VariationInfoDistance
       bins | HacineGharbiRavier()
  normalise | Bool: true

Related

source
PortfolioOptimisers.CanonicalDistanceType
struct CanonicalDistance <: AbstractDistanceAlgorithm end

Canonical distance algorithm for portfolio optimization.

Defines the canonical distance metric for a given covariance estimator. The resulting distance metric is consistent with the properties of the covariance estimator (relevant when the covariance estimator is MutualInfoCovariance).

Covariance EstimatorDistance Metric
MutualInfoCovarianceVariationInfoDistance
LTDCovarianceLogDistance
DistanceCovarianceCorrelationDistance
StatsBase.CovarianceEstimatorSimpleDistance

The table also applies to PortfolioOptimisersCovariance where ce is one of the aforementioned estimators.

When used with a covariance matrix directly, uses SimpleDistance.

Related

source
PortfolioOptimisers.AbstractDistanceEstimatorType
abstract type AbstractDistanceEstimator <: AbstractEstimator end

Abstract supertype for all distance estimator types in PortfolioOptimisers.jl.

All concrete types implementing distance-based estimation algorithms should subtype AbstractDistanceEstimator. This enables a consistent interface for distance-based measures (such as correlation distance, absolute distance, or information-theoretic distances) throughout the package.

Related

source
PortfolioOptimisers.AbstractDistanceAlgorithmType
abstract type AbstractDistanceAlgorithm <: AbstractAlgorithm end

Abstract supertype for all distance algorithm types in PortfolioOptimisers.jl.

All concrete types implementing specific distance-based algorithms (such as correlation distance, absolute distance, log distance, or information-theoretic distances) should subtype AbstractDistanceAlgorithm. This enables flexible extension and dispatch of distance routines for use in portfolio optimization and risk analysis.

Related

source